음정이란 무엇일까요??
음정은 '두 음 사이의 간격'을 의미합니다.
예를 들어 '도 ~ 솔 까지 얼마나 떨어져 있을까요?' 라고 질문했을 때
우리는 정형화된 단위를 필요로하는데
이것이 바로 '음정' 입니다.
음정은 장, 단, 완전, 증, 감 등의 성질이 있으며,
성질과 함께 숫자를 적어 얼마큼 두 음이 떨어져 있는지를 나타낼 수 있습니다.
먼저 숫자를 알아보도록 하겠습니다.
악보를 보고 계이름만 읽을 수 있다면 우리는 음정의 숫자만큼은 모두 알 수 있습니다.
예를 들어 가운데 도에서 바로 위의 레까지의 거리는 '도, 레'로 2입니다.
가운데 도부터 솔까지의 거리는 '도, 레, 미, 파, 솔'로 5입니다.
x ~ y까지 거리라고 하였을 때, x를 포함하여 y까지 손가락을 접어가며 세어봅시다.
이때, 임시표가 붙어 있더라도 음정의 숫자는 임시표를 우선 무시하고 진행하게 됩니다.
(임시표는 숫자가 아닌 성질을 바꾸게 됩니다.)
이렇게 구한 숫자에 따라 음정의 성질은 조금 달라집니다.
1, 4, 5, 8 | 2, 3, 6, 7 |
완전음정 | 장음정 or 단음정 |
일단 이것은 무조건 외워야 합니다.
1, 4, 5, 8도는 완전!
2, 3, 6, 7도는 장 or 단 음정!!
즉, 음정의 숫자가 1, 4, 5, 8이라면 음정의 성질은 기본적으로 완전음정이 되고,
2, 3, 6, 7인 경우 음정의 성질은 장음정 or 단음정이 됩니다.
이것은 약속이므로 꼭 외우셔야 합니다.
완전음정은 장 or 단 음정이 될 수 없고
반대 또한 마찬가지입니다.
장, 단음정 및 완전음정
- 장, 단음정
먼저 2, 3, 6, 7 중 2도를 알아보겠습니다.
장2도는 온음, 단2도는 반음
온음과 반음이 어떤 것인지 어려우시다면 아래의 글을 한번 읽어보시기 바랍니다!
간략히 설명하자면 먼저 흰건반으로만 봤을 때 미와 파가 반음, 시와 도가 반음입니다.
검은건반까지 포함하자면 미의 반음은 파도 있지만 그 아래의 미 b 또한 반음 관계입니다.
온음은 쉽게 말해 반음이 두 개 붙어있는 것으로 생각하면 됩니다.
장3도는 온음이 2개, 단3도는 온음 1개와 반음 1개
2도와 3도는 반음이 하나라도 있으면 '단'이 붙고, 하나도 없으면 '장'이 붙습니다.
(도-레-미 를 '장3도'라고 하고, 미-파-솔 을 '단3도'라고 합니다.)
이제 6도와 7도가 남았는데 2도와 3도처럼 두 개는 같은 조건을 가지고 있습니다.
장6도와 장7도는 반음 1개를 포함하고, 단6도와 단7도는 반음 2개를 포함
- 완전 음정
완전1도는 같은 두 음의 음정
완전8도는 어떤 음과 한 옥타브 위나 아래에 있는 음(이때 한 옥타브는 8음으로 같은 계이름을 가지고 있습니다.)
즉, 반음 2개를 포함하고 있습니다.(흰건반으로 만 봤을 때 가온 도~ 높은 도 내에 반음은 미와파, 시와도가 있죠.)
완전4도와 완전5도도 같은 조건을 가지고 있습니다.
완전 4도와 완전5도는 반음이 하나 포함된 음정
임시표가 붙은 음정 찾기
임시표가 붙은 음정을 찾을 때는
1. 임시표를 무시하고 흰건반끼리의 음정을 파악한다.
2. 임시표를 적용하면서 최종음정을 파악한다.
순으로 진행됩니다.
⬅️ 좁아짐 넓어짐➡️
겹감 | 감 | 단 | 장 | 증 | 겹증 |
완전 |
임시표를 적용하게 되면 다른 성질로 바뀌게 되는데 위의 표대로
좁아질수록 감, 겹감이 되고, 넓어질수록 증, 겹증으로 변화됩니다.
예를 들어 단3도에서 아래의 음에 #이 붙는다면 이것은 반음 좁아진 것으로 감3도가 됩니다.
완전4도에서 위의 음에 b이 붙는다면 이것 또한 좁아진 것으로 감4도가 됩니다.
완전음정에서는 하나가 줄어들거나 늘어나면 감 or 증이 됩니다.
장음정에서 하나가 줄어들면 단음정이 되고,
단음정에서 하나가 늘어나면 장음정이 됩니다. 그 이후는 완전음정과 같습니다.
건반을 생각해 봅시다.
두 음에 손가락을 올려놓고 샵과 플랫을 붙였을 때 손가락의 거리가 늘어나는지,
줄어드는지를 생각해 본다면 쉽게 구분할 수 있을 것입니다.
중요!!
4도 음정 중 임시표가 붙지 않았는데도 증4도인 곳이 있습니다.
완전4도는 반음이 1개가 있어야 하는데 파~시는 흰건반으로 만 이루어져 있는데도 불구하고 반음이 하나도 없습니다.
따라서 이 경우는 완전4도보다 반음이 더 넓기 때문에 증4도가 됩니다.
겹음정(Compound Interval)
지금까지 우리가 배운 것은 1~8도까지이고, 겹음정은 9도 이상의 음정을 이야기합니다.
우리가 지금까지 배운 홑음정(1~8도)의 성질을 이용하면 쉽게 구할 수 있습니다.
예를 들어 가운데 도부터 9도 위인 레까지 음정의 성질을 구한다고 생각해 봅시다.
이때, 우리는 두 음 중 하나의 옥타브를 내리거나 올려 홑음정. 즉, 1~8도 안의 음정이 될 수 있게 만들어줍니다.
그렇게 되면 도와 레는 장2도라는 성질을 가지게 되죠.
우리가 필요한 것은 음정의 성질이므로 장2도의 '장'만 가져와 장9도라는 정답을 얻을 수 있습니다.
(이 모든 과정을 쉽게 말하자면 음정의 숫자에 7을 뺏다가 성질을 구한 후 다시 더해주면 됩니다.)
그 후, 만약 임시표가 붙어있다면 지금까지 배운 대로 성질을 구하면 됩니다.
음정의 성질에 따른 숫자 표기법
장음정 or 완전음정 = 숫자 |
2, 3, 6, 7도의 단음정 = b숫자 |
2, 3, 6, 7도의 감음정 = °숫자 |
1, 4, 5, 8도의 감음정 = b숫자 |
증음정 = #숫자 |
1. 장음정 or 완전음정은 숫자만 표기
2. 2, 3, 6, 7도의 단음정인 경우는 b숫자로 표기
3. 감음정의 경우 숫자에 따라 표기방법이 다름. °숫자 or b숫자로 표기
숫자에따라 표기 방법이 다르기 때문에 2, 3, 6, 7도에 나오는 'b숫자'와
1, 4, 5, 8도에 나오는 'b숫자'의 의미 구별이 필요!!
4. 증음정인 경우 #숫자로 표기
5. 숫자 앞에 붙은 #과 b은 임시표의 # 또는 b과 아무 상관없음. 그저 음정의 성질을 나타내는 것.
5번에 대해 다시 한번 이야기하자면
- 음표 앞에 붙은 # or b은 음의 높낮이를 조절하는 임시표
- 숫자 앞에 붙은 # or b은 음정의 성질을 나타내는 표기법
음정의 전위(Inversion of Interval)
음정의 전위는 공식이 존재합니다.
1. 전위된 음정의 성질 = 장 ↔️ 단, 완전 ↔️ 완전, 증 ↔️ 감, 겹증 ↔️ 겹감
2. 전위된 음정의 숫자 = 9 - (원래 음정의 숫자)
'음악 공부 > 화성학' 카테고리의 다른 글
다이아토닉 3화음에 대해 자세히 알아보자 - 재즈화성학 (0) | 2024.03.03 |
---|---|
코드의 기초가 되는 3화음(triad) - 재즈화성학 (4) | 2024.01.22 |
단음계 (minor scale)에 대해서 알아보자 - 재즈화성학 (2) | 2024.01.13 |
음계(scale)은 무엇일까요? - 재즈화성학 (2) | 2024.01.11 |